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Data: 
Ø  4yrs’ exposure	
  
Ø  P7v6 
Ø  Front events 
Ø  E>1GeV 

Fermi Detected γ–ray Emission 
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13 identified SNRs, including  
 - 9 interacting 
 - 4 young SNRs 

Fermi-Detected γ–ray SNRs 
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Fermi-Detected γ–ray SNRs 



13 identified SNRs, including  
 - 9 interacting 
 - 4 young SNRs 

+ 43 2FGL candidates,  
      excluding identified PSRs, 

       PWN, & AGN 

counts	
  

Fermi-Detected SNRs 
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To better understand SNRs in a statistically significant manner, within a MW context.  

SNR Catalog: 

Ø Systematically characterize GeV emission in regions containing SNRs, 
Ø Determine the characteristics of the population of GeV SNRs 
Ø Examine multiwavelength (MW) correlation(s), 
Ø Constrain known SNRs’ contribution(s) to the Galactic CR population	
  

With particular efforts from: 
 F. Acero, J. Ballet (CEA-Saclay/France) 
 J. Cohen, J. W. Hewitt (NASA/Goddard) 
 F. de Palma (INFN/Bari), G. Johannesson (U. Iceland) 
 M. Renaud (LUPM), L. Tibaldo (SLAC),  
 B. Wells (UCSC) 



Data Set: 
Ø  3 years of P7SOURCE_V6 LAT data 
Ø  E: 1-100 GeV 
Ø  Region Of Interest: 10° around each SNR 

Green’s Catalog: (2009) 
Ø  279 SNRs 

Starting Model: 
Ø  2FGL 

Overlapping sources? 
Ø  = None: Add a new extended source 
Ø  = 1 source (not PSR): Replace w extended source 
Ø  > 1 source: Replace (non-PSR) source closest to 

radio centroid w extended source. Delete all other 
(non-PSR) sources. 

Localize source, fit extension 
Ø  Disk extension seed = radio size 
Ø  Spectral model: power law 
Ø  Normalization of Galactic diffuse and all 

sources w/in 5° of candidate are free during 
minimization procedure. 

Output: 
Ø  Position, extension, significance 
Ø  Spectral energy distribution 
Ø  Region and residual maps 
Ø  Diagnostics T.	
  J.	
  Brandt	
  

Characterize 
systematic error 
from the 
interstellar 
emission model 

Improve starting 
model: AddSources 

Characterize GeV Emission: 
Analysis Procedure 

Identify candidates as likely 
SNRs by spatial coincidence. 

See F. de Palma’s talk in 10B / 5p! 	
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Ø Fermi-LAT has the ability to spatially resolve a large number of the 279 known SNRs.	
  

T.	
  J.	
  Brandt	
  

SNR Catalog: 

Preliminary	
  

See F. de Palma’s talk in 10B / 5p! 	
  



End of slide show
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Quantify spatial overlap: 
Classification 

Preliminary	
  



End of slide show
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Use measure of chance coincidence in mock catalog to estimate false alarm 
rate and error.  Set thresholds to 0.4: <25% false-positive rate 

Classification 

Preliminary	
  

Classified 
candidates 

Marginally classified 
candidates 



End of slide show
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Quantify spatial overlap: 
Classification 

Classified 
candidates 

Marginally classified 
candidates 

Preliminary	
  

See F. de Palma’s talk in 10B / 5p! 	
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Characterized 279 regions containing known radio SNRs: 

Ø 109 candidates have significant GeV emission: 
Ø     4 identified as other sources (Crab, binary, and PWN/PSR) 
Ø   32 candidates pass classification threshold:  

        (location and extension overlap fractions ≥0.4) 

Ø 16 extended: 3 new!  
Ø 16 pointlike hypothesis preferred: 7 new! 
Ø   2 have logP spectra (in 1-100GeV energy range) 

Ø 242 flux upper limits at radio position and extension 
Ø  for those which are significant but don’t pass classification: both 

candidate parameters and radio SNR UL reported 

SNR Catalog: Results! 



End of slide show


13	
  

Classified GeV candidates tend to correlate with their radio size: 

GeV v Radio Radius 
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Ø  Interacting SNRs: 
density≥100cm-3 

Ø Young SNRs: 
evidence of non-
thermal X-ray emission 

Ø Classified candidates 
Ø Marginal candidates: 

0.1 ≤ classification 
thresholds (location and 
extension overlap) < 0.4 

 
 

Ø  Capped error bars: 
Statistical 

Ø  Uncapped: Systematic  
 

Preliminary	
  

Error estimate details:  
F. de Palma 10B / 5p! 	
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Candidates span 2 orders of magnitude in flux and from 1.5 – 5.0 in index, 
despite examining only 1-100GeV energy range. 

GeV Flux v Index 

Ø  Interacting SNRs: 
density≥100cm-3 

Ø Young SNRs: 
evidence of non-
thermal X-ray emission 

Ø Classified candidates 
Ø Marginal candidates: 

0.1 ≤ classification 
thresholds (location and 
extension overlap) < 0.4 

 
 

Ø  Capped error bars: 
Statistical 

Ø  Uncapped: Systematic  
 

Extended 
Pointlike 
Classified 
Marginal 

Preliminary	
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Radio synchrotron emission indicates the presence of relativistic leptons. 
LAT-detected SNRs tend to be radio-bright: 

Ø  Interacting SNRs: 
general correlation 
suggests a physical link  

 
Ø Young SNRs show 
more scatter 

T.	
  J.	
  Brandt	
  

Radio-GeV Correlation? 
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Radio vs 1-100 GeV Indices

If radio and GeV emission arise from the same particle population(s), under simple 
assumptions, the GeV and radio indices should be correlated: 

Ø Young SNRs: seem consistent 
Ø Others, including interacting 
SNRs: softer than expected 

Data now challenge model 
assumptions! 
Ø  Underlying particle populations 

may have different indices. 
Ø  Emitting particle populations may 

not follow a power law; breaks? 
Ø  Multiple emission zones? 

GeV-Radio slope correlation for: 
Ø  π0 decay or e+/- bremmstrahlung 
Ø  inverse Compton 
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Radio-GeV Index 
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IC 443 

IC 443 SED 
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Ø  Indication of break at TeV energies 
Ø Caveat: TeV sources are not uniformly surveyed. 
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GeV-TeV Index 

Preliminary	
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Ø  Indication of break between GeV and TeV 
Ø Caveat: TeV sources are not uniformly surveyed. 
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GeV-TeV Index 

Break	
  region	
  

Preliminary	
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Young SNRs tend to be harder than older, interacting SNRs. 

GeV index evolves w time: 
Ø apparent increase for 
older remnants 
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May be due to a 
combination of: 
Ø decreasing shock speed 
allowing greater particle 
escape 

Ø decreasing maximum 
acceleration energy as 
SNRs age 

Age v GeV Index 
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1-100 GeV Flux vs Radio Diameter
No clear correlation nor separation between classes:  

Candidates tend to: 
Ø span the range of 
known sizes 

Ø  fill in regions w 
previously fewer 
known sources =>  

Ø ability to make more 
statistically robust 
population statements!  
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Flux v Radio Size 

upper limits 
(i=2.5, 99%) 
ULs, interacting 
(i=2.5, 99%) 
ULs, young 
(i=2.5, 99%) 

Preliminary	
  



We can relate our SNR flux measurements to the energy imparted to CRs: 
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F(1−100GeV) ≈10−8 εCR
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where we assume 
Ø  all emission is hadronic in origin, 
Ø  ECRmax > ≈ 200GeV, and  
Ø ΓCR ≈ 2.5 

εCR is the content in particles accelerated up to the 
observation time relative to the SN explosion energy 
which, under the assumption that energy losses & escape 
are negligible, is the hadron efficiency. 

Constraining CR Acceleration  



We can relate our SNR flux measurements to the energy imparted to CRs: 
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εCR is the content in particles accelerated up to the 
observation time relative to the SN explosion energy 
which, under the assumption that energy losses & escape 
are negligible, is the hadron efficiency. 

F(1−100GeV) ≈10−8 εCR
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where we assume 
Ø  all emission is hadronic in origin, 
Ø  ECRmax > ≈ 200GeV, and  
Ø ΓCR ≈ 2.5 

We can also allow 
ECRmax and ΓCR to vary:	
  

Constraining CR Acceleration  



We can relate our SNR flux measurements to the energy imparted to CRs: 
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εCR ×10
49erg ≈ F(1−100GeV)

1.5×10−7cm2s
d

1kpc
$

%
&

'

(
)

2
n

1cm−3

$

%
&

'

(
)

−1

F(1−100GeV) ≈10−8 εCR
0.1

×
ESN

1051ergs
×

n
1cm−3 ×

d
1kpc
$

%
&

'

(
)

−2

cm−2s−1

where we assume 
Ø  all emission is hadronic in origin, 
Ø  ECRmax > ≈ 200GeV, and  
Ø ΓCR ≈ 2.5 

Solving for the energetics, 

εCR is the content in particles accelerated up to the 
observation time relative to the SN explosion energy 
which, under the assumption that energy losses & escape 
are negligible, is the hadron efficiency. 

Constraining CR Acceleration  



Relating SNR flux measurements to the energy imparted to CRs: 
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Constraining CR Acceleration  

Preliminary	
  

“Efficiency”  
Ø  ~ 10-100% for all candidates 
Ø  ~1000% suggests emission may also be leptonic and/or d, n estimate may be inaccurate  

Fermi-LAT has the ability to probe population-wide, the CR-relevant phase space! 
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Conclusions 



➢ SNR Catalog systematically confronts and solves challenges faced by 
analyses of Galactic Plane sources: 

➢  Uniquely addressed with: AddSrcs, aIEM, classification & mock catalog 
➢ GeV SNR population characteristics: 

➢  Candidate distribution to flux completeness of 10-8 ph cm-2s-1 with a 
characteristic index of 2.5 & range (4, 1.5) 

➢  Data are challenging model assumptions!  
➢  Index appears to soften with age: possible separation between young & 

interacting SNRs 

➢ MW correlations: 
➢  TeV-GeV index shows evidence of breaks for many sources; sample limited 
➢  Quantifying radio-GeV correlation within constraints of incomplete, non-

uniform distances 
➢ Constraining CR contribution: 

➢  Ability to constrain known SNRs’ aggregate contribution to CRs 
➢  Measured efficiencies average ~ 10% => possible to create bulk 

Measuring a statistically significant population of GeV SNRs 
within a MW context permits us to assess the class’s ability to 

supply CRs observed by direct detection experiments. 
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Conclusions 


